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Training samples
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“Training” your improper prior

® The idea of splitting your sample into a training set and a test set is at the
core of statistics and machine learning.

® Use the training set, y*, to turn your improper prior into a proper one,
and the rest, y**, to run the actual test.

[)[((y>’< | Gk, M = k)ﬂ',,(v(gk | M = k)
my (y*)

mi(y** | M = k,y*)
ml, (y** | M = k', y*)

T (0 | M = k,y*) =

B/i,k’(Y) =

® [f you average over training samples = Intrinsic Bayes Factor (Berger &
Pericchi, 1996).

® Size of the training sample? = Minimal!
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EP priors

® |ntroduced by Pérez & Berger (2002).

® EP priors follow a similar rationale, but use an imaginary training sample,
which is averaged out!

100 M= K\rNO, | M=k
'/TE(ak|Mk):/pk(y ‘ k N)k(k‘ )

m(y*)

m*(y*)dy*

® Choosing the training sample is replaced with choosing m*.

® For nested models, a common option is m*(y*) = m{/ (y*) (‘simplest”
model), which makes the EP prior asymptotically equivalent to the prior

implied by the AIBF!
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PEP priors

® |ntroduced by Fouskakis et al. 2015.

® Similar to the EP prior, but it “scales” training likelihood to be
(approximately) unit information!

TFEP (O | M) o
{pi(y* | 0, M = K)}*/° (8, | M = k)

m*(y* | §) p(5)dy*ds
f{pk(y*‘ek7M:k)}1/57rll<V(9k‘M:k)dek (v" 1) p(3)dy

where p(d) has mean n*.

® Computationally tractable when py(y* | @k, M = k) is Gaussian.
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An example: Linear Models

® Wheny | 0,02, X, ~N (y | Xka,azl) and 7T,'(V(0k) x 1and

PEP(ek | Mk)

S (o farxi} iy o (i} ) ) ploasay

® For n* = nand X} = Xy, compare that with the corresponding g-prior:

-1
(0 | My) = /N <9k 10,002 {szxz} >,3(5)d5

(Recall that p is centered around n.)
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Generalizing PEPs to GLMs

® |n the case of Gaussian linear models, the PEP is relatively easy to derive
because rescaling by 1/6 leaves the likelihood in the normal family.

® The same is not true for other members of the exponential family (e.g.,
logistic or loglinear regression).

® Fouskakis et al. (2018) propose a generalization, but it has various
theoretical, computational and empirical drawbacks.

® \We propose a different generalization: the Laplace PEPs!

» Porwal, A., & Rodriguez, A. (2021). Laplace Power-expected-posterior
priors for generalized linear models with applications to logistic
regression. arXiv preprint arXiv:2112.02524.
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Laplace Power-expected-posterior Prior (LPEP)

® To construct the Laplace PEP, replace px(y* | Ok, M = k) with its
Laplace approximation before raising to the 1/0 power!

P 0k | My) o

/ N (8k 1 81 (v*) M, (81 (v°))) w0k | M = k)

~ - m* (y*) p(8)dy”ds
IN (8 [0 (7) 60 (0 vm)) e es | M= ke,

® Laplace approximation should be particularly accurate when n* = n but,
conceptually, the procedure is reasonable for other choices of n*.

® Animplicit constraint on y* is that the Laplace approximation needs to be
well defined (e.g., the MLE needs to exist for every model under
consideration).
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Example: Logistic regression

® |ikelihood is

n_exp {YiX,-Tkek}
pily | 06, M= k) =]]
;:114#6XP{XZ;9k}

e pick m*(y*) = m}/(y*)1(y* € Qk(X)) where

Qu(X) = {y : O (y, X) is finite for all k}
e T+ 12N (n -y +1/2)
C T(n+1)(M(1/2))

N
mg (y)
® Various possible choices for p(¢) (fixed, hyper-g/n, robust prior).

12/44



Example: Logistic regression

® For logistic regression (and many other GLMs!) it is enough to show that
0« (y, X) is finite when k corresponds to the full model!
P We provide easy-to-verify sufficient conditions in the paper.

® Checking this condition for logistic regression is relatively straightforward
using the algorithm of Kosmidis and Schumacher (2020).

® |n this case, the prior is proper for every model k.
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Properties of the LPEP for GLMs

® For linear models, this is just your standard PEP!
® Under standard regularity conditions Bayes factors / posterior model
probabilities are consistent.
» True even if p grows with n at a reasonably slow rate.

® \Well-defined intrinsic prior.

® Unlike Li & Clyde, (2018), it can be used even if the original data is
separable, or in hierarchical settings.

» Good theoretical properties.

® The fact that they correspond to mixtures of normals facilitates
computation using MCMC.
» For a number of GLMs, no need for reversible-jump schemes like
Fouskakis et al. (2018).
» A second Laplace approximation can be used to speed up computation as
in Li & Clyde, (2018).
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Simulation study: Design

n = 500; p = 100; 100 bootstrapped datasets

® Columns of X drawn from standard normal distribution with pairwise
correlation cor(Xj, Xj) = rli=ilfor1 < i <j<p

® Scenarios: r = 0 (independent design) and r = 0.75 (correlated design)
® pa; denote the number of variables in the true model
* b=(2,-1,-1,0.5, —0.5)T and Ba1,,21:100 = 0

pvr  Bmro  Bmris  Bmreio Bmriris  Buri6:20

0 -0.5 0 0 0 0
5 —-0.5 b 0 0 0
10 —05 b 0 b 0
20 0.5 b 0.5b b 0.5b

® Comparison with: Mixture of g-priors (Li & Clyde, 2018), LASSO, SCAD and
MCP.
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Simulation study: Results - MAP model properties

p 100
p(M) Beta-Binomial(1,1)
Py 5 20
r 0 0.75 0 0.75 0 075 0 0.75
LPEP 99 100* 45 4 18% 0 0 0
d=n LCE 100* 100* 45 5 8 0 0 0
LCL 100* 100* 46 4 11 0 0 0
LPEP 99 100* 53*  6* 15 0 0 0
0 ~ robust LCE 99 100* 45 6* 0 0 0 0
LCL 100* 100* 46 6* 2 0 0 0
LPEP 98 100* 50 5 17 0 0 0
& ~ hyper g/n LCE 97 99 25 4 0 0o 0 o0
LCL 65 78 3 0 0 0 0 0
LASSO 59 65 0 0 0 0 0 0
SCAD 57 59 0 0 0 0 0 0
MCP 73 66 8 0 3 0 0 0

Table: Number of times (over 100 replications) that the MAP model coincides with the true model in the
logistic regression ; BOLD represent group maximum; * represent overall maximum.
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Simulation study: Results - F1 score

F1 score
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Simulation study: Results - Mean squared error

P 100
p(M) Beta-Binomial(1,1)
PMy 10 20
r 0 0.75 0 0.75 0 0.75 0 0.75
LPEP | 0.11 0.10* 291 7.67 7.09 17.67 1470  33.90
d=n LCE | 011 0.10% 306 778 7.64 1844 1611 3647
LCL | 0.10% 0.10* 287 768 678 1817 1622  36.43
LPEP | 0.12 0.10* 2.62* 6.87* 6.04* 14.07%* 1338 24.03*
0 ~ robust LCE | 012 011 483 780 4730 2330 96.14 52.80
LCL | 0.10* 0.10* 886 844 21463 60.56 27593 115.58
LPEP | 016 014 270 6.89 612 1476 13.03* 24.86
0 ~hyperg/n | LCE | 023 0413 671 890 3854 2625 5148  44.29
LCL | 029 031 3428 2293 10410 7295 130.80 94.98
LASSO | 025 020 7.08 11.91 1715 2504 2944  36.69
SCAD | 021 0.6 3.07 9.02 662 1880 1488  33.00
MCP | 022 018 282 892 635 1938 1513 3352

Table: 1000 times the AMSE for estimated coefficients over 100 replications; BOLD represent group

minimum; * represent overall minimum.
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Gusto-I study: survival to treatments for occluded coronary arteries

® Model the binary endpoint of 30-day survival for a subgroup of n = 2188
patients using 17 clinical covariates
LPEP: g=n I1

LCL: g=n

CRPEP: g=n
DRPEP: g=n

02
LPEP: robust

0
LCL: robust
LPEP: hyper-g/n
LCL: hyper-g/n
CRPEP: hyper-g/n
DRPEP: hyper-g/in
LASSO

SCAD

MmcP

&

& & \L\ofg LEST TSNS &
Figure: Marginal posterior inclusion probabilities (PIPs) for GUSTO-I dataset (Bayesian procedures) and
variables included in the model (penalized likelihood methods). 19/44



GUSTO-I study: Out-of-sample Predictive Performance

® We performed a 10-fold cross-validation study

® AUC and Calibration slope (CS) allow us to evaluate the methods in terms
of discrimination and calibration; 1 score is better

® | S & BRIER measure the predictive accuracy of methods; |, score is better

AUC cs LS BRIER

LPEP | 0.8324* 0.9971 0.1824  0.0496
LCL 0.8300 0.9931 0.1831 0.0497

d=n
CRPEP 0.7789 1.0578 0.1965 0.0521
DRPEP | 0.7790 1.0569 0.1963 0.0521
LPEP 0.8322 1.0129 0.1822 0.0495
& ~ robust

LCL 0.8316 0.9804 0.1822 0.0495

LPEP 0.8319 1.0074* 0.1823 0.0495

LCL 0.8311 1.0109 0.1818 0.0493
CRPEP | 0.7956 1.1677 0.1951 0.0522
DRPEP | 0.7800 1.0571 0.1961 0.0520

& ~ hyper g/n

LASSO | 0.8305 1.0369 0.1816* 0.0492*
SCAD 0.8243 0.9135 0.1838  0.0496
MCP 0.8250 0.9196 0.1838  0.0496

Table: Average prediction accuracy measures in a 10-fold cross validation study for GUSTO-1I dataset 20/ 44



Prior matching
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Factor models

Consider multivariate responses y; = (y,',1, e ,y,-’J)T wherey; ; € R
and i =1,..., /. Afactor model takes the form

Yij =W+ af Bi+eij eij ~ N(0,07)

T T
a; = (aj,la"’vaj,d)r B = (ﬁ;,l,...,ﬁ;yd),andd<< J.
® Used for dimensionality reduction, covariance estimation, prediction.

® The same bilinear structure can be built into Generalized Linear Models.
For example, for binary data y; ; € {0, 1},

yij ~ Ber (6:)) 0ij = G (MJ + afﬁ;)

where G is a link function (probit, logit, etc).
® Can be naturally extended to network/relational data.
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Factor models: challenges

® Common practical challenges related to model selection:
P Selecting the dimension d of the latent space.

P Selecting between a parametric and a non-parametric specification for the
distribution of the latent traits.

® The parameters of the model are not identifiable without incorporating
some constraints.

» This can make interpretation and prior elicitation hard.

® Priors need to be chosen very carefully if comparisons are going to be
meaningful.
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Factor models: selecting d

® Consider a slight generalization of the factor model where
C— A .
Yij = Wj + o Bi + €i

where A = diag{\1,...,A\q} and \x € {0,1}

® The introduction of the Axs would in principle enable inference of the
dimension of the latent space.

® Note that

d
Var (yij | uj, , N) = Var (i) + > Aeayj i Var (Bi)
k=1

® |fi.i.d. priors are used for the B,-J(s (which is common), then

Jim Var (i | nj, 4, A) = 00
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Factor models: selecting d

® There are a couple of possible solutions:
P Allow the variance of 3; x to decrease with k fast enough, for example
Var (ﬂf7k) = O(k72)
> Allow Pr(Ax = 1) to decrease fast enough with k.

® This setting extends to factor models embedded in GLMs.

® We have used these approaches in a few papers:

P Guha, S. & Rodriguez, A. (2021). Bayesian regression with undirected
network predictors with an application to brain connectome data. Journal
of the American Statistical Association, 116(534), 581-593.

P Sosa, ). & Rodriguez, A. (2021). A latent space model for cognitive social
structures data. Social Networks, 65, 85-97.

» Guhaniyogi, R. & Rodriguez, A. (2020). Joint modeling of longitudinal
relational data and exogenous variables. Bayesian Analysis, 15(2), 477-503.
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Factor models: selecting d

Underlying principle: when eliciting priors on
non-identifiable parameters for various models, the implied
priors on key identifiable quantities should be similar across

models.
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Factor models: parametric vs. non-parametric specifications

® (Consider the 1D factor model:
Yij ~ Ber (G(p; + a;pi))

® Motivating application: item response

models
i =Testsubject
Jj =Question
;= Difficulty
«j = Discrimination
B; =skil
® Rasch model is a special case.

By (SKil)
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Factor models: parametric vs. non-parametric specifications

® Two possible specifications for the random effect:
> Standard parametric model: 5; ~ N(0, 1)

» Non-parametric specification (Dirichlet process mixture of normals):

51 G~ /N(- 10, 72)G(dn,dr2), G ~ DP(M, Go)

® How do you fairly compare these two models?

» Paganin, S., Paciorek, C. J., Wehrhahn, C., Rodriguez, A., Rabe-Hesketh, S., &
de Valpine, P. (2022+). Computational methods for Bayesian
semiparametric Item Response Theory models. arXiv preprint
arXiv:2101.11583.

> Try to match the prior distribution of 8; = G(u; + «;f;) across both
models!
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Binary factor models in general topological spaces

® The models we discussed previously project the data on low-dimensional
Euclidean spaces.

® |n some applications (e.g., in political sciences) other geometries might be
more appropriate!
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Spatial voting models

Rational choice theory derivation:

wj = "Yeah"position € R Policy Space representation
¢; ="Nay"position € RY .
B, =ldeal point € R? i
2 .
UiJ(Yeah =—Bi -l +es
) =~ |-G Py 1
where vij —€jj ~ Gj,andy;; = 1 & | e
U,-,J-(Yeah) > U,-jj(Nay), N e
T T = ) ;
NJ:CjCJ‘_'I.Z’j",bJ' S—
aj =2(; - ¢;)
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Binary factor models in general topological spaces

® Consider letting 1}, ¢, 3; € D, where D is a connected Riemannian
manifold and define

UI,J YES :_{d(ﬁn,lbj)} + €y
,’J(NO __{d(BHCJ)} +Vi,j7

where d (,6,-, Q,bj) is the geodesic distance between (3; and 1b; and
Vii— €~ Gg.
o J j

® Asbefore, y; j = 1iff U; j(Yes) > U; j(No), so

Py =11 85Gir o) = Gy ({0 (81:¢)) 1 = {d (Brw) 7).
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Spherical factor models

® Inthe SKTL, the geodesic distance is given by
pk+1(¢, B) = arccos (X;ZXB)' with, for example,
Xqp,1 = COS 1 COS Y COSY3 -+ - COS Py _1,

Xop,2 = SinP1 COS 12 COS Y3 - - - COS PK_1,
Xqp,3 =SiNtP2cOSP3 ... COSPK_1

Xap, K = sin 1[);(,1 Cos va
Xap, K+1 =SiNPk.

® Yu, X., & Rodriguez, A. (2022). A Bayesian Approach to Spherical Factor
Analysis for Binary Data. arXiv preprint arXiv:2008.05109.
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Priors for spherical factor models

J

Standard von-Misses Fisher distributions on the sphere for {¢j}j:1r

{¢;}7-1 and {B;};_, will not work!
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Variance of induced prior on 0; ; - Von Misses-Fisher priors
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Spherical models

® \We need a new class of priors on the sphere that allows for marginal
variances of the angles to decrease with as new dimensions are added

K
P(Qb‘ u)) — <:21r) 2[(1hjéi1) exp {uq_COS<¢1}

AN
exp {wy cos 2
,(1_12/0(%) p {wk cos2¢ }

® Unlike the Euclidean case, we need the variance to decrease for both the
ideal points and the Yes/No positions!
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Variance of induced prior on 0; ; - Von Misses-Fisher priors
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Heavy tail priors
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The role of priors with heavy tails

Robust
(bounded Heavy-tail
influence) priors

inference

Information
paradox in
model
selection
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Two philosophies ...

g-priors and its kin

Horseshoe and its kin

® Accounts for the “right”
correlation among
coefficients.

® “Non-directional”: Same tail
behavior in every direction

® Coefficients are independent
a priori.

® “Directional”; tails along axis
are heavier than tails in other
directons
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Getting the best of both worlds:

® “Directional” g-priors:
-1
0|7, Ay, 02 ~ N (0,02/\}/2 X%} /\,1/2>

with /\"Y = d|ag {)\ﬂy’l; e )\VaPW} and )\7’-] ~ H

® “Correlated” continuous shrinkage priors:
2 2 [y Ta-1y | "
0|No>~N(0,0 {x /\—x}

with A = diag {A1,... Ap}and \j ~ H.
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Factor models

® A lot of the literature on continuous shrinkage priors has focused on
making the Horseshoe a bit more flexible by making the distribution H
more flexible by adding a couple of extra parameters.

® You could make the specification more flexible by setting a

non-parametric prior on H (e.g., a Pdlya Tree centered on the half Cauchy
distribution).

® Still somewhat speculative, this is work in progress!
» Calibration?

» How much can you really learn when you specify a non-parametric model
further down in the hierarchy?
» Efficient computation.
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Concluding remarks
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Concluding remarks

® Alot of the things that | learned from Pericchi 20 years ago still influence
both my research and my teaching.

® | cannot believe it has been 20 years ...

® The school that he created in Venezuela starting in the id 80s and early
90s is still going strong, if in exile ...
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Thank you!
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