Default Priors and Robust Estimation for Generalized Linear Models

(A.K.A., A few things I learned from Luis Pericchi)

Abel Rodríguez

O'Bayes Meeting April, 2022

Outline

Once upon a time ...

Training samples

Prior matching

Heavy tail priors

Once upon a time ...

Training samples

Prior matching

Heavy tail priors

Once upon a time ...

Training samples

Prior matching

Heavy tail priors

"Training" your improper prior

- The idea of splitting your sample into a training set and a test set is at the core of statistics and machine learning.
- Use the training set, y^{*}, to turn your improper prior into a proper one, and the rest, y^{**}, to run the actual test.

$$\pi_{k}^{I}(\theta_{k} \mid M = k, y^{*}) = \frac{p_{k}(y^{*} \mid \theta_{k}, M = k)\pi_{k}^{N}(\theta_{k} \mid M = k)}{m_{k}^{N}(y^{*})}$$
$$m_{k}^{I}(y^{**} \mid M = k, y^{*}) = \int p_{k}(y^{**} \mid y^{*}, \theta_{k}, M = k)\pi_{k}^{I}(\theta_{k} \mid M = k, y^{*})d\theta_{k}$$
$$B_{k,k'}^{I}(y) = \frac{m_{k}^{I}(y^{**} \mid M = k, y^{*})}{m_{k'}^{I}(y^{**} \mid M = k', y^{*})}$$

- If you average over training samples \Rightarrow *Intrinsic Bayes Factor* (Berger & Pericchi, 1996).
- Size of the training sample? ⇒ Minimal!

EP priors

- Introduced by Pérez & Berger (2002).
- EP priors follow a similar rationale, but use an *imaginary* training sample, which is averaged out!

$$\pi_k^{\mathsf{E}}(\boldsymbol{\theta}_k \mid M_k) = \int \frac{p_k(\mathbf{y}^* \mid \boldsymbol{\theta}_k, M = k) \pi_k^{\mathsf{N}}(\boldsymbol{\theta}_k \mid M = k)}{m_k^{\mathsf{N}}(\mathbf{y}^*)} m^*(\mathbf{y}^*) \, \mathrm{d}\mathbf{y}^*$$

- Choosing the training sample is replaced with choosing m^* .
- For nested models, a common option is $m^*(y^*) = m_0^N(y^*)$ ("simplest" model), which makes the EP prior asymptotically equivalent to the prior implied by the AIBF!

- Introduced by Fouskakis et al. 2015.
- Similar to the EP prior, but it "scales" training likelihood to be (approximately) unit information!

$$\begin{split} &\pi_k^{PEP}(\boldsymbol{\theta}_k \mid M_k) \propto \\ &\int \frac{\{p_k(\mathbf{y}^* \mid \boldsymbol{\theta}_k, M = k)\}^{1/\delta} \, \pi_k^N(\boldsymbol{\theta}_k \mid M = k)}{\int \{p_k(\mathbf{y}^* \mid \boldsymbol{\theta}_k, M = k)\}^{1/\delta} \, \pi_k^N(\boldsymbol{\theta}_k \mid M = k) \mathrm{d}\boldsymbol{\theta}_k} \, m^*(\mathbf{y}^* \mid \delta) \, p(\delta) \mathrm{d}\mathbf{y}^* \mathrm{d}\delta \end{split}$$

where $p(\delta)$ has mean n^* .

• Computationally tractable when $p_k(\mathbf{y}^* \mid \boldsymbol{\theta}_k, M = k)$ is Gaussian.

An example: Linear Models

• When y
$$\mid m{ heta}_k, \sigma^2, X_k \sim N\left(y \mid X_k m{ heta}_k, \sigma^2 I \right)$$
 and $\pi_k^N(m{ heta}_k) \propto 1$ and

$$\pi_{k}^{PEP}(\boldsymbol{\theta}_{k} \mid M_{k}) = \\ \int \mathsf{N}\left(\boldsymbol{\theta}_{k} \mid \left\{\mathsf{X}_{k}^{*T}\mathsf{X}_{k}^{*}\right\}^{-1}\mathsf{X}_{k}^{*T}\mathsf{y}^{*}, \delta\sigma^{2}\left\{\mathsf{X}_{k}^{*T}\mathsf{X}_{k}^{*}\right\}^{-1}\right) m^{*}(\mathsf{y}^{*} \mid \delta) p(\delta) \mathrm{d}\delta \mathrm{d}\mathsf{y}^{*}$$

• For $n^* = n$ and $X_k^* = X_k$, compare that with the corresponding g-prior:

$$\pi_{k}^{g}(\boldsymbol{\theta}_{k} \mid M_{k}) = \int \mathsf{N}\left(\boldsymbol{\theta}_{k} \mid 0, \delta\sigma^{2}\left\{\mathsf{X}_{k}^{*T}\mathsf{X}_{k}^{*}\right\}^{-1}\right) \tilde{\boldsymbol{\rho}}(\delta) \mathrm{d}\delta$$

(Recall that \tilde{p} is centered around *n*.)

Generalizing PEPs to GLMs

- In the case of Gaussian linear models, the PEP is relatively easy to derive because rescaling by $1/\delta$ leaves the likelihood in the normal family.
- The same is not true for other members of the exponential family (e.g., logistic or loglinear regression).
- Fouskakis et al. (2018) propose a generalization, but it has various theoretical, computational and empirical drawbacks.
- We propose a different generalization: the Laplace PEPs!
 - Porwal, A., & Rodriguez, A. (2021). Laplace Power-expected-posterior priors for generalized linear models with applications to logistic regression. arXiv preprint arXiv:2112.02524.

Laplace Power-expected-posterior Prior (LPEP)

• To construct the Laplace PEP, replace $p_k(y^* \mid \theta_k, M = k)$ with its Laplace approximation **before** raising to the $1/\delta$ power!

$$\begin{split} \pi_{k}^{PEP}(\boldsymbol{\theta}_{k}\mid\boldsymbol{M}_{k}) \propto \\ &\int \frac{\mathsf{N}\left(\boldsymbol{\theta}_{k}\mid\boldsymbol{\hat{\theta}}_{k}\left(\mathbf{y}^{*}\right),\delta\boldsymbol{H}_{k}^{-1}\left(\boldsymbol{\hat{\theta}}_{k}\left(\mathbf{y}^{*}\right)\right)\right)\pi_{k}^{N}(\boldsymbol{\theta}_{k}\mid\boldsymbol{M}=k)}{\int\mathsf{N}\left(\boldsymbol{\theta}_{k}\mid\boldsymbol{\hat{\theta}}_{k}\left(\mathbf{y}^{*}\right),\delta\boldsymbol{H}_{k}^{-1}\left(\boldsymbol{\hat{\theta}}_{k}\left(\mathbf{y}^{*}\right)\right)\right)\pi_{k}^{N}(\boldsymbol{\theta}_{k}\mid\boldsymbol{M}=k)\mathrm{d}\boldsymbol{\theta}_{k}}m^{*}\left(\mathbf{y}^{*}\right)p(\delta)\mathrm{d}\mathbf{y}^{*}\mathrm{d}\boldsymbol{\delta} \end{split}$$

- Laplace approximation should be particularly accurate when $n^* = n$ but, conceptually, the procedure is reasonable for other choices of n^* .
- An implicit constraint on y^{*} is that the Laplace approximation needs to be well defined (e.g., the MLE needs to exist for every model under consideration).

Example: Logistic regression

Likelihood is

$$p_{k}(\mathbf{y} \mid \boldsymbol{\theta}_{k}, M = k) = \prod_{i=1}^{n} \frac{\exp\left\{y_{i}\mathbf{x}_{i,k}^{T}\boldsymbol{\theta}_{k}\right\}}{1 + \exp\left\{\mathbf{x}_{i,k}^{T}\boldsymbol{\theta}_{k}\right\}}$$

• Pick $m^*(\mathsf{y}^*) = m_0^N(\mathsf{y}^*) \mathbb{1}(\mathsf{y}^* \in \Omega_k(\mathsf{X}))$ where

 $\Omega_k(\mathsf{X}) = \{\mathsf{y} : \hat{\boldsymbol{\theta}}_k(\mathsf{y},\mathsf{X}) \text{ is finite for all } k\}$

and

$$m_0^N(y^*) = \frac{\Gamma(y_{\cdot}^* + 1/2)\Gamma(n - y_{\cdot}^* + 1/2)}{\Gamma(n+1)\left(\Gamma(1/2)\right)^2}$$

• Various possible choices for $p(\delta)$ (fixed, hyper-g/n, robust prior).

Example: Logistic regression

- For logistic regression (and many other GLMs!) it is enough to show that $\hat{\theta}_k(y, X)$ is finite when k corresponds to the full model!
 - We provide easy-to-verify sufficient conditions in the paper.
- Checking this condition for logistic regression is relatively straightforward using the algorithm of Kosmidis and Schumacher (2020).
- In this case, the prior is proper for every model *k*.

Properties of the LPEP for GLMs

- For linear models, this is just your standard PEP!
- Under standard regularity conditions Bayes factors / posterior model probabilities are consistent.
 - True even if *p* grows with *n* at a reasonably slow rate.
- Well-defined intrinsic prior.
- Unlike Li & Clyde, (2018), it can be used even if the original data is separable, or in hierarchical settings.
 - Good theoretical properties.
- The fact that they correspond to mixtures of normals facilitates computation using MCMC.
 - For a number of GLMs, no need for reversible-jump schemes like Fouskakis et al. (2018).
 - A second Laplace approximation can be used to speed up computation as in Li & Clyde, (2018).

Simulation study: Design

- n = 500; p = 100; 100 bootstrapped datasets
- Columns of X drawn from standard normal distribution with pairwise correlation $cor(X_i, X_j) = r^{|i-j|}$ for $1 \le i < j \le p$
- Scenarios: r = 0 (independent design) and r = 0.75 (correlated design)
- $p_{\mathcal{M}_{\mathcal{T}}}$ denote the number of variables in the true model

• $m{b} = (2, -1, -1, 0.5, -0.5)^{T}$ and $eta_{\mathcal{M}_{\mathcal{T}}, 21:100} = 0$											
	p _{MT}	$\beta_{M_T,0}$	$\beta_{M_T,1:5}$	$\beta_{M_T,6:10}$	$\beta_{M_T,11:15}$	$\beta_{M_T,16:20}$					
	0	-0.5	0	0	0	0					
	5	-0.5	Ь	0	0	0					
	10	-0.5	Ь	0	Ь	0					
	20	-0.5	Ь	0.5 b	Ь	0.5 b					

 Comparison with: Mixture of g-priors (Li & Clyde, 2018), LASSO, SCAD and MCP.

Simulation study: Results - MAP model properties

р	100								
p(M)	Beta-Binomial(1,1)								
P _{MT}		0		5		10		20	
r		0	0.75	0	0.75	0	0.75	0	0.75
	LPEP	99	100*	45	4	18*	0	0	0
$\delta = n$	LCE	100*	100*	45	5	8	0	0	0
	LCL	100*	100*	46	4	11	0	0	0
$\delta \sim { m robust}$	LPEP	99	100*	53*	6*	15	0	0	0
	LCE	99	100*	45	6*	0	0	0	0
	LCL	100*	100*	46	6*	2	0	0	0
$\delta \sim$ hyper g/n	LPEP	98	100*	50	5	17	0	0	0
	LCE	97	99	25	4	0	0	0	0
	LCL	65	78	3	0	0	0	0	0
	LASSO	59	65	0	0	0	0	0	0
	SCAD	57	59	0	0	0	0	0	0
	MCP	73	66	8	0	3	0	0	0

Table: Number of times (over 100 replications) that the MAP model coincides with the true model in the logistic regression; BOLD represent group maximum; * represent overall maximum.

Simulation study: Results - F1 score

Figure: F1 score across 100 simulated datasets; Red dots represent the average

Simulation study: Results - Mean squared error

p	100										
p(M)		Beta-Binomial(1,1)									
РМТ		0		5		10		20			
r		0	0.75	0	0.75	0	0.75	0	0.75		
	LPEP	0.11	0.10*	2.91	7.67	7.09	17.67	14.70	33.90		
$\delta = n$	LCE	0.11	0.10*	3.06	7.78	7.64	18.44	16.11	36.47		
	LCL	0.10*	0.10*	2.87	7.68	6.78	18.17	16.22	36.43		
	LPEP	0.12	0.10*	2.62*	6.87*	6.04*	14.07*	13.38	24.03*		
$\delta \sim {\rm robust}$	LCE	0.12	0.11	4.83	7.80	47.30	23.30	96.14	52.80		
	LCL	0.10*	0.10*	8.86	8.44	214.63	60.56	275.93	115.58		
	LPEP	0.16	0.14	2.70	6.89	6.12	14.76	13.03*	24.86		
$\delta \sim {\rm hyper} {\rm g/n}$	LCE	0.23	0.13	6.71	8.90	38.54	26.25	51.48	44.29		
	LCL	0.29	0.31	34.28	22.93	104.10	72.95	130.80	94.98		
	LASSO	0.25	0.20	7.08	11.91	17.15	25.04	29.44	36.69		
	SCAD	0.21	0.16	3.07	9.02	6.62	18.80	14.88	33.00		
	MCP	0.22	0.18	2.82	8.92	6.35	19.38	15.13	33.52		

Table: 1000 times the AMSE for estimated coefficients over 100 replications; **BOLD** represent group minimum; * represent overall minimum.

Gusto-I study: survival to treatments for occluded coronary arteries

• Model the binary endpoint of 30-day survival for a subgroup of n = 2188 patients using 17 clinical covariates

Figure: Marginal posterior inclusion probabilities (PIPs) for GUSTO-I dataset (Bayesian procedures) and variables included in the model (penalized likelihood methods).

GUSTO-I study: Out-of-sample Predictive Performance

- We performed a 10-fold cross-validation study
- LS & BRIER measure the predictive accuracy of methods; \downarrow score is better

		AUC	CS	LS	BRIER
	LPEP	0.8324*	0.9971	0.1824	0.0496
δ — n	LCL	0.8300	0.9931	0.1831	0.0497
0 = H	CRPEP	0.7789	1.0578	0.1965	0.0521
	DRPEP	0.7790	1.0569	0.1963	0.0521
	LPEP	0.8322	1.0129	0.1822	0.0495
$\delta \sim 1000$ sc	LCL	0.8316	0.9804	0.1822	0.0495
	LPEP	0.8319	1.0074*	0.1823	0.0495
S . hunor aln	LCL	0.8311	1.0109	0.1818	0.0493
$\sigma \sim nyper g/n$	CRPEP	0.7956	1.1677	0.1951	0.0522
	DRPEP	0.7800	1.0571	0.1961	0.0520
	LASSO	0.8305	1.0369	0.1816*	0.0492*
	SCAD	0.8243	0.9135	0.1838	0.0496
	MCP	0.8250	0.9196	0.1838	0.0496

Table: Average prediction accuracy measures in a 10-fold cross validation study for GUSTO-I dataset 20/44

Once upon a time ...

Training samples

Prior matching

Heavy tail priors

Factor models

• Consider multivariate responses $y_i = (y_{i,1}, \dots, y_{i,J})^T$ where $y_{i,j} \in \mathbb{R}$ and $i = 1, \dots, I$. A factor model takes the form

$$y_{i,j} = \mu_j + \alpha_j^T \beta_i + \epsilon_{i,j}$$
 $\epsilon_{i,j} \sim \mathsf{N}(0, \sigma_j^2)$
 $\alpha_i^T = (\alpha_{j,1}, \dots, \alpha_{j,d}), \beta_i^T = (\beta_{i,1}, \dots, \beta_{i,d}), \text{ and } d \ll J.$

- Used for dimensionality reduction, covariance estimation, prediction.
- The same bilinear structure can be built into Generalized Linear Models. For example, for binary data $y_{i,j} \in \{0, 1\}$,

$$y_{i,j} \sim \mathsf{Ber}\left(\theta_{i,j}\right) \qquad \qquad \theta_{i,j} = \mathcal{G}_j\left(\mu_j + \boldsymbol{\alpha}_j^T \boldsymbol{\beta}_i\right)$$

where G is a link function (probit, logit, etc).

• Can be naturally extended to network/relational data.

Factor models: challenges

- Common practical challenges related to model selection:
 - Selecting the dimension *d* of the latent space.
 - Selecting between a parametric and a non-parametric specification for the distribution of the latent traits.
- The parameters of the model are not identifiable without incorporating some constraints.
 - This can make interpretation and prior elicitation hard.
- Priors need to be chosen very carefully if comparisons are going to be meaningful.

Factor models: selecting d

• Consider a slight generalization of the factor model where

$$y_{i,j} = \mu_j + \alpha_j^T \mathbf{\Lambda} \boldsymbol{\beta}_i + \epsilon_{i,j}$$

where $\Lambda = ext{diag}\{\lambda_1, \dots, \lambda_d\}$ and $\lambda_k \in \{0, 1\}$

- The introduction of the λ_k s would in principle enable inference of the dimension of the latent space.
- Note that

$$\mathsf{Var}\left(y_{i,j} \mid \mu_{j}, \boldsymbol{\alpha}_{j}, \boldsymbol{\Lambda}\right) = \mathsf{Var}\left(\epsilon_{i,j}\right) + \sum_{k=1}^{d} \lambda_{k} \alpha_{j,k} \mathsf{Var}\left(\beta_{i,k}\right)$$

• If i.i.d. priors are used for the $\beta_{i,k}$ s (which is common), then

$$\lim_{d\to\infty} \mathsf{Var}\left(y_{i,j}\mid \mu_j, \boldsymbol{\alpha}_j, \boldsymbol{\Lambda}\right) = \infty$$

Factor models: selecting d

- There are a couple of possible solutions:
 - Allow the variance of $\beta_{i,k}$ to decrease with k fast enough, for example Var $(\beta_{i,k}) = \mathcal{O}(k^{-2})$.
 - Allow $Pr(\lambda_k = 1)$ to decrease fast enough with k.
- This setting extends to factor models embedded in GLMs.
- We have used these approaches in a few papers:
 - Guha, S. & Rodriguez, A. (2021). Bayesian regression with undirected network predictors with an application to brain connectome data. Journal of the American Statistical Association, 116(534), 581-593.
 - Sosa, J. & Rodríguez, A. (2021). A latent space model for cognitive social structures data. Social Networks, 65, 85-97.
 - Guhaniyogi, R. & Rodriguez, A. (2020). Joint modeling of longitudinal relational data and exogenous variables. Bayesian Analysis, 15(2), 477-503.

Factor models: selecting d

Underlying principle: when eliciting priors on non-identifiable parameters for various models, the implied priors on key identifiable quantities should be similar across models.

Factor models: parametric vs. non-parametric specifications

• Consider the 1D factor model:

$$y_{i,j} \sim \text{Ber}\left(G(\mu_j + \alpha_j\beta_i)\right)$$

- Motivating application: *item response models*
 - *i* = Test subject
 - *j* = Question
 - μ_j = Difficulty
 - α_j = Discrimination
 - $\beta_i = \text{Skill}$
- Rasch model is a special case.

Factor models: parametric vs. non-parametric specifications

- Two possible specifications for the random effect:
 - Standard parametric model: $\beta_i \sim N(0, 1)$
 - Non-parametric specification (Dirichlet process mixture of normals):

$$eta_i \mid \mathbf{G} \sim \int \mathsf{N}(\cdot \mid \eta, \tau^2) \mathbf{G}(\mathrm{d}\eta, \mathrm{d}\tau^2), \qquad \mathbf{G} \sim \mathsf{DP}(\mathbf{M}, \mathbf{G}_0)$$

- How do you fairly compare these two models?
 - Paganin, S., Paciorek, C. J., Wehrhahn, C., Rodriguez, A., Rabe-Hesketh, S., & de Valpine, P. (2022+). Computational methods for Bayesian semiparametric Item Response Theory models. arXiv preprint arXiv:2101.11583.

Try to match the prior distribution of $\theta_i = G(\mu_j + \alpha_j \beta_i)$ across both models!

Binary factor models in general topological spaces

- The models we discussed previously project the data on low-dimensional Euclidean spaces.
- In some applications (e.g., in political sciences) other geometries might be more appropriate!

Spatial voting models

Rational choice theory derivation:

$$\begin{split} \psi_{j} &= \text{"Yeah" position} \in \mathbb{R}^{d} \\ \zeta_{j} &= \text{"Nay" position} \in \mathbb{R}^{d} \\ \beta_{i} &= \text{Ideal point} \in \mathbb{R}^{d} \\ U_{i,j}(\text{Yeah}) &= -\left\|\beta_{i} - \psi_{j}\right\|^{2} + \epsilon_{i,j} \\ U_{i,j}(\text{Nay}) &= -\left\|\beta_{i} - \zeta_{j}\right\|^{2} + \nu_{i,j} \\ \text{where } \nu_{i,j} - \epsilon_{i,j} \sim G_{j}, \text{ and } y_{i,j} = 1 \Leftrightarrow \\ U_{i,j}(\text{Yeah}) > U_{i,j}(\text{Nay}), \\ \mu_{j} &= \zeta_{j}^{T}\zeta_{j} - \psi_{j}^{T}\psi_{j} \\ \alpha_{i} &= 2(\psi_{i} - \zeta_{i}) \end{split}$$

Binary factor models in general topological spaces

• Consider letting $\psi_j, \zeta_j, \beta_i \in \mathcal{D}$, where \mathcal{D} is a connected Riemannian manifold and define

$$\begin{split} &U_{i,j}(\text{Yes}) = -\left\{d\left(\beta_{i}, \psi_{j}\right)\right\}^{2} + \epsilon_{i,j}, \\ &U_{i,j}(\text{No}) = -\left\{d\left(\beta_{i}, \zeta_{j}\right)\right\}^{2} + \nu_{i,j}, \end{split}$$

where $d(\beta_i, \psi_j)$ is the *geodesic distance* between β_i and ψ_j and $\nu_{i,j} - \epsilon_{i,j} \sim G_{\kappa_j}$.

• As before, $y_{i,j} = 1$ iff $U_{i,j}(\text{Yes}) > U_{i,j}(\text{No})$, so

$$\mathsf{P}(y_{i,j}=1 \mid \boldsymbol{\beta}_i, \zeta_j, \zeta_j, \kappa_j) = \mathsf{G}_{\kappa_j} \left(\left\{ d\left(\boldsymbol{\beta}_i, \boldsymbol{\zeta}_j\right) \right\}^2 - \left\{ d\left(\boldsymbol{\beta}_i, \boldsymbol{\psi}_j\right) \right\}^2 \right)$$

Spherical factor models

• In the S^{K+1} , the geodesic distance is given by $\rho_{K+1}(\psi, \beta) = \arccos\left(\mathbf{x}_{\psi}^{T}\mathbf{x}_{\beta}\right)$, with, for example,

$$\begin{aligned} x_{\psi,1} &= \cos \psi_1 \cos \psi_2 \cos \psi_3 \cdots \cos \psi_{K-1}, \\ x_{\psi,2} &= \sin \psi_1 \cos \psi_2 \cos \psi_3 \cdots \cos \phi_{K-1}, \\ x_{\psi,3} &= \sin \psi_2 \cos \psi_3 \dots \cos \psi_{K-1} \end{aligned}$$

$$\begin{aligned} x_{\psi,K} &= \sin \psi_{K-1} \cos \psi_K, \\ x_{\psi,K+1} &= \sin \psi_K. \end{aligned}$$

• Yu, X., & Rodriguez, A. (2022). A Bayesian Approach to Spherical Factor Analysis for Binary Data. arXiv preprint arXiv:2008.05109.

Priors for spherical factor models

Standard von-Misses Fisher distributions on the sphere for $\{\psi_j\}_{j=1}^J$, $\{\zeta_j\}_{j=1}^J$ and $\{\beta_i\}_{i=1}^I$ will not work!

Variance of induced prior on $\theta_{i,j}$ - Von Misses-Fisher priors

Spherical models

• We need a new class of priors on the sphere that allows for marginal variances of the angles to decrease with as new dimensions are added

$$p(\phi \mid \omega) = \left(\frac{1}{2\pi}\right)^{\kappa} 2^{\kappa-1} \frac{1}{l_0(\omega_1)} \exp\left\{\omega_1 \cos \phi_1\right\}$$
$$\prod_{k=2}^{\kappa} \frac{1}{l_0(\omega_k)} \exp\left\{\omega_k \cos 2\phi_k\right\}$$

• Unlike the Euclidean case, we need the variance to decrease for both the ideal points and the Yes/No positions!

Variance of induced prior on $\theta_{i,j}$ - Von Misses-Fisher priors

 $\omega = 0.5$

 $\omega = 10$

Once upon a time ...

Training samples

Prior matching

Heavy tail priors

The role of priors with heavy tails

Two philosophies ...

$g\operatorname{-priors}$ and its kin

Horseshoe and its kin

- Accounts for the "right" correlation among coefficients.
- "Non-directional": Same tail behavior in every direction

- Coefficients are independent a priori.
- "Directional": tails along axis are heavier than tails in other directons

Getting the best of both worlds:

• "Directional" *g*-priors:

$$\boldsymbol{\theta}_{\boldsymbol{\gamma}} \mid \boldsymbol{\gamma}, \boldsymbol{\Lambda}_{\boldsymbol{\gamma}}, \sigma^{2} \sim \mathsf{N}\left(\boldsymbol{0}, \sigma^{2}\boldsymbol{\Lambda}_{\boldsymbol{\gamma}}^{1/2} \left\{\mathsf{X}_{\boldsymbol{\gamma}}^{\mathsf{T}}\mathsf{X}_{\boldsymbol{\gamma}}\right\}^{-1} \boldsymbol{\Lambda}_{\boldsymbol{\gamma}}^{1/2}\right)$$

with $\Lambda_{\gamma} = \text{diag} \left\{ \lambda_{\gamma,1}, \dots \lambda_{\gamma,p_{\gamma}} \right\}$ and $\lambda_{\gamma,j} \sim H$.

"Correlated" continuous shrinkage priors:

$$\boldsymbol{\theta} \mid \boldsymbol{\Lambda}, \sigma^{2} \sim \mathsf{N}\left(\boldsymbol{0}, \sigma^{2}\left\{\mathsf{X}^{\mathsf{T}}\boldsymbol{\Lambda}^{-1}\mathsf{X}\right\}^{-1}\right)$$

with $\Lambda = \text{diag} \{\lambda_1, \dots, \lambda_p\}$ and $\lambda_j \sim H$.

Factor models

- A lot of the literature on continuous shrinkage priors has focused on making the Horseshoe a bit more flexible by making the distribution *H* more flexible by adding a couple of extra parameters.
- You could make the specification more flexible by setting a non-parametric prior on *H* (e.g., a Pòlya Tree centered on the half Cauchy distribution).
- Still somewhat speculative, this is work in progress!
 - Calibration?
 - How much can you really learn when you specify a non-parametric model further down in the hierarchy?
 - Efficient computation.

Once upon a time ...

Training samples

Prior matching

Heavy tail priors

- A lot of the things that I learned from Pericchi 20 years ago still influence both my research and my teaching.
- I cannot believe it has been 20 years ...
- The school that he created in Venezuela starting in the id 80s and early 90s is still going strong, if in exile ...

Thank you!