
Default Priors and Robust Estimation for
Generalized Linear Models
(A.K.A., A few things I learned from Luis Pericchi)

Abel Rodríguez

O’Bayes Meeting
April, 2022

6/25/19, 2)07 PMUW-Statistics-Logo-Color-trimmed

Page 1 of 1https://www.stat.washington.edu/themes/custom/uw_stats/css/assets/icons/logo.svg



Outline

Once upon a time ...

Training samples

Prior matching

Heavy tail priors

Concluding remarks



Once upon a time ...

Training samples

Prior matching

Heavy tail priors

Concluding remarks

3 / 44



4 / 44



Once upon a time ...

Training samples

Prior matching

Heavy tail priors

Concluding remarks

5 / 44



“Training” your improper prior

• The idea of splitting your sample into a training set and a test set is at the
core of statistics and machine learning.

• Use the training set, y∗, to turn your improper prior into a proper one,
and the rest, y∗∗, to run the actual test.

πI
k(θk | M = k, y∗) =

pk(y∗ | θk ,M = k)πN
k (θk | M = k)

mN
k (y∗)

mI
k(y

∗∗ | M = k, y∗) =
∫

pk(y∗∗ | y∗,θk ,M = k)πI
k(θk | M = k , y∗)dθk

B I
k,k′(y) =

mI
k(y

∗∗ | M = k , y∗)
mI

k′(y∗∗ | M = k ′, y∗)

• If you average over training samples⇒ Intrinsic Bayes Factor (Berger &
Pericchi, 1996).

• Size of the training sample?⇒Minimal!
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EP priors

• Introduced by Pérez & Berger (2002).
• EP priors follow a similar rationale, but use an imaginary training sample,

which is averaged out!

πE
k (θk | Mk) =

∫
pk(y∗ | θk ,M = k)πN

k (θk | M = k)

mN
k (y∗)

m∗(y∗) dy∗

• Choosing the training sample is replaced with choosingm∗.

• For nested models, a common option ism∗(y∗) = mN
0 (y

∗) (“simplest”
model), which makes the EP prior asymptotically equivalent to the prior
implied by the AIBF!
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PEP priors

• Introduced by Fouskakis et al. 2015.
• Similar to the EP prior, but it “scales” training likelihood to be

(approximately) unit information!

πPEP
k (θk | Mk ) ∝∫ {pk (y∗ | θk ,M = k)}1/δ πN

k (θk | M = k)∫
{pk (y∗ | θk ,M = k)}1/δ πN

k (θk | M = k)dθk
m∗(y∗ | δ) p(δ)dy∗dδ

where p(δ) has mean n∗.
• Computationally tractable when pk(y∗ | θk ,M = k) is Gaussian.
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An example: Linear Models

• When y | θk , σ2,Xk ∼ N
(
y | Xkθk , σ

2I
)
and πN

k (θk) ∝ 1 and

πPEP
k (θk | Mk) =∫

N
(
θk |

{
X∗T

k X∗
k

}−1
X∗T

k y∗, δσ2
{

X∗T
k X∗

k

}−1
)
m∗(y∗ | δ) p(δ)dδdy∗

• For n∗ = n and X∗
k = Xk , compare that with the corresponding g-prior:

πg
k (θk | Mk) =

∫
N
(
θk | 0, δσ2

{
X∗T
k X∗

k

}−1
)
p̃(δ)dδ

(Recall that p̃ is centered around n.)
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Generalizing PEPs to GLMs

• In the case of Gaussian linear models, the PEP is relatively easy to derive
because rescaling by 1/δ leaves the likelihood in the normal family.

• The same is not true for other members of the exponential family (e.g.,
logistic or loglinear regression).

• Fouskakis et al. (2018) propose a generalization, but it has various
theoretical, computational and empirical drawbacks.

• We propose a different generalization: the Laplace PEPs!
▶ Porwal, A., & Rodriguez, A. (2021). Laplace Power-expected-posterior

priors for generalized linear models with applications to logistic
regression. arXiv preprint arXiv:2112.02524.
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Laplace Power-expected-posterior Prior (LPEP)

• To construct the Laplace PEP, replace pk(y∗ | θk ,M = k) with its
Laplace approximation before raising to the 1/δ power!

π
PEP
k (θk | Mk ) ∝

∫ N
(
θk | θ̂k

(
y∗

)
, δH−1

k

(
θ̂k

(
y∗

)))
πN
k (θk | M = k)∫

N
(
θk | θ̂k (y∗) , δH−1

k

(
θ̂k (y∗)

))
πN
k
(θk | M = k)dθk

m∗(y∗) p(δ)dy∗dδ

• Laplace approximation should be particularly accurate when n∗ = n but,
conceptually, the procedure is reasonable for other choices of n∗.

• An implicit constraint on y∗ is that the Laplace approximation needs to be
well defined (e.g., the MLE needs to exist for every model under
consideration).
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Example: Logistic regression

• Likelihood is

pk(y | θk ,M = k) =
n∏

i=1

exp
{
yixTi ,kθk

}
1 + exp

{
xTi ,kθk

}
• Pickm∗(y∗) = mN

0 (y
∗)1(y∗ ∈ Ωk(X)) where

Ωk(X) = {y : θ̂k(y,X) is finite for all k}

and

mN
0 (y

∗) =
Γ(y∗· + 1/2)Γ(n − y∗· + 1/2)

Γ(n + 1) (Γ(1/2))2

• Various possible choices for p(δ) (fixed, hyper-g/n, robust prior).
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Example: Logistic regression

• For logistic regression (and many other GLMs!) it is enough to show that
θ̂k(y,X) is finite when k corresponds to the full model!
▶ We provide easy-to-verify sufficient conditions in the paper.

• Checking this condition for logistic regression is relatively straightforward
using the algorithm of Kosmidis and Schumacher (2020).

• In this case, the prior is proper for every model k .

13 / 44



Properties of the LPEP for GLMs

• For linear models, this is just your standard PEP!

• Under standard regularity conditions Bayes factors / posterior model
probabilities are consistent.
▶ True even if p grows with n at a reasonably slow rate.

• Well-defined intrinsic prior.

• Unlike Li & Clyde, (2018), it can be used even if the original data is
separable, or in hierarchical settings.
▶ Good theoretical properties.

• The fact that they correspond to mixtures of normals facilitates
computation using MCMC.
▶ For a number of GLMs, no need for reversible-jump schemes like

Fouskakis et al. (2018).
▶ A second Laplace approximation can be used to speed up computation as

in Li & Clyde, (2018).
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Simulation study: Design

• n = 500; p = 100; 100 bootstrapped datasets
• Columns of X drawn from standard normal distribution with pairwise

correlation cor(Xi ,Xj) = r |i−j | for 1 ≤ i < j ≤ p

• Scenarios: r = 0 (independent design) and r = 0.75 (correlated design)
• pMT

denote the number of variables in the true model
• b = (2,−1,−1, 0.5,−0.5)T and βMT ,21:100 = 0

pMT
βMT ,0 βMT ,1:5 βMT ,6:10 βMT ,11:15 βMT ,16:20

0 −0.5 0 0 0 0
5 −0.5 b 0 0 0
10 −0.5 b 0 b 0
20 −0.5 b 0.5b b 0.5b

• Comparison with: Mixture of g-priors (Li & Clyde, 2018), LASSO, SCAD and
MCP.
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Simulation study: Results - MAP model properties

p 100
p(M) Beta-Binomial(1,1)
pMT

0 5 10 20

r 0 0.75 0 0.75 0 0.75 0 0.75

δ = n
LPEP 99 100* 45 4 18* 0 0 0
LCE 100* 100* 45 5 8 0 0 0
LCL 100* 100* 46 4 11 0 0 0

δ ∼ robust
LPEP 99 100* 53* 6* 15 0 0 0
LCE 99 100* 45 6* 0 0 0 0
LCL 100* 100* 46 6* 2 0 0 0

δ ∼ hyper g/n
LPEP 98 100* 50 5 17 0 0 0
LCE 97 99 25 4 0 0 0 0
LCL 65 78 3 0 0 0 0 0

LASSO 59 65 0 0 0 0 0 0
SCAD 57 59 0 0 0 0 0 0
MCP 73 66 8 0 3 0 0 0

Table: Number of times (over 100 replications) that theMAPmodel coincides with the true model in the
logistic regression ; BOLD represent group maximum; * represent overall maximum.
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Simulation study: Results - F1 score
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p−true= 5
p−true= 10

p−true= 20

UIP Robust Hyper−g/n Frequentist UIP Robust Hyper−g/n Frequentist

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

method

F1
 s

co
re

LPEP

LCE

LCL

LASSO

SCAD

MCP

Figure: F1 score across 100 simulated datasets; Red dots represent the average 17 / 44



Simulation study: Results - Mean squared error

p 100
p(M) Beta-Binomial(1,1)
pMT

0 5 10 20

r 0 0.75 0 0.75 0 0.75 0 0.75

δ = n
LPEP 0.11 0.10* 2.91 7.67 7.09 17.67 14.70 33.90
LCE 0.11 0.10* 3.06 7.78 7.64 18.44 16.11 36.47
LCL 0.10* 0.10* 2.87 7.68 6.78 18.17 16.22 36.43

δ ∼ robust
LPEP 0.12 0.10* 2.62* 6.87* 6.04* 14.07* 13.38 24.03*
LCE 0.12 0.11 4.83 7.80 47.30 23.30 96.14 52.80
LCL 0.10* 0.10* 8.86 8.44 214.63 60.56 275.93 115.58

δ ∼ hyper g/n
LPEP 0.16 0.14 2.70 6.89 6.12 14.76 13.03* 24.86
LCE 0.23 0.13 6.71 8.90 38.54 26.25 51.48 44.29
LCL 0.29 0.31 34.28 22.93 104.10 72.95 130.80 94.98

LASSO 0.25 0.20 7.08 11.91 17.15 25.04 29.44 36.69
SCAD 0.21 0.16 3.07 9.02 6.62 18.80 14.88 33.00
MCP 0.22 0.18 2.82 8.92 6.35 19.38 15.13 33.52

Table: 1000 times the AMSE for estimated coefficients over 100 replications; BOLD represent group
minimum; * represent overall minimum.
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Gusto-I study: survival to treatments for occluded coronary arteries

• Model the binary endpoint of 30-day survival for a subgroup of n = 2188
patients using 17 clinical covariates
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GUSTO-I study: Out-of-sample Predictive Performance

• We performed a 10-fold cross-validation study
• AUC and Calibration slope (CS) allow us to evaluate the methods in terms

of discrimination and calibration; ↑ score is better
• LS & BRIER measure the predictive accuracy of methods; ↓ score is better

AUC CS LS BRIER

δ = n

LPEP 0.8324* 0.9971 0.1824 0.0496
LCL 0.8300 0.9931 0.1831 0.0497

CRPEP 0.7789 1.0578 0.1965 0.0521
DRPEP 0.7790 1.0569 0.1963 0.0521

δ ∼ robust
LPEP 0.8322 1.0129 0.1822 0.0495
LCL 0.8316 0.9804 0.1822 0.0495

δ ∼ hyper g/n

LPEP 0.8319 1.0074* 0.1823 0.0495
LCL 0.8311 1.0109 0.1818 0.0493

CRPEP 0.7956 1.1677 0.1951 0.0522
DRPEP 0.7800 1.0571 0.1961 0.0520

LASSO 0.8305 1.0369 0.1816* 0.0492*
SCAD 0.8243 0.9135 0.1838 0.0496
MCP 0.8250 0.9196 0.1838 0.0496

Table: Average prediction accuracy measures in a 10-fold cross validation study for GUSTO-I dataset 20 / 44
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Factor models

• Consider multivariate responses yi = (yi ,1, . . . , yi ,J)
T where yi ,j ∈ R

and i = 1, . . . , I . A factor model takes the form

yi ,j = µj +α
T
j βi + ϵi ,j ϵi ,j ∼ N(0, σ2

j )

αT
j = (αj ,1, . . . , αj ,d), βT

i = (βi ,1, . . . , βi ,d), and d ≪ J .

• Used for dimensionality reduction, covariance estimation, prediction.

• The same bilinear structure can be built into Generalized Linear Models.
For example, for binary data yi ,j ∈ {0, 1},

yi ,j ∼ Ber (θi ,j) θi ,j = Gj

(
µj +α

T
j βi

)
where G is a link function (probit, logit, etc).

• Can be naturally extended to network/relational data.
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Factor models: challenges

• Common practical challenges related to model selection:
▶ Selecting the dimension d of the latent space.
▶ Selecting between a parametric and a non-parametric specification for the

distribution of the latent traits.

• The parameters of the model are not identifiable without incorporating
some constraints.
▶ This can make interpretation and prior elicitation hard.

• Priors need to be chosen very carefully if comparisons are going to be
meaningful.
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Factor models: selecting d

• Consider a slight generalization of the factor model where

yi ,j = µj +α
T
j Λβi + ϵi ,j

where Λ = diag{λ1, . . . , λd} and λk ∈ {0, 1}
• The introduction of the λks would in principle enable inference of the

dimension of the latent space.
• Note that

Var (yi ,j | µj ,αj ,Λ) = Var (ϵi ,j) +
d∑

k=1

λkαj ,kVar (βi ,k)

• If i.i.d. priors are used for the βi ,ks (which is common), then

lim
d→∞

Var (yi ,j | µj ,αj ,Λ) = ∞
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Factor models: selecting d

• There are a couple of possible solutions:
▶ Allow the variance of βi,k to decrease with k fast enough, for example

Var (βi,k) = O(k−2).
▶ Allow Pr(λk = 1) to decrease fast enough with k .

• This setting extends to factor models embedded in GLMs.

• We have used these approaches in a few papers:
▶ Guha, S. & Rodriguez, A. (2021). Bayesian regression with undirected

network predictors with an application to brain connectome data. Journal
of the American Statistical Association, 116(534), 581-593.

▶ Sosa, J. & Rodríguez, A. (2021). A latent space model for cognitive social
structures data. Social Networks, 65, 85-97.

▶ Guhaniyogi, R. & Rodriguez, A. (2020). Joint modeling of longitudinal
relational data and exogenous variables. Bayesian Analysis, 15(2), 477-503.
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Factor models: selecting d

Underlying principle: when eliciting priors on
non-identifiable parameters for various models, the implied
priors on key identifiable quantities should be similar across

models.

26 / 44



Factor models: parametric vs. non-parametric specifications

• Consider the 1D factor model:

yi ,j ∼ Ber (G (µj + αjβi ))

• Motivating application: item response
models

i = Test subject
j = Question

µj = Difficulty
αj = Discrimination
βi = Skill

• Rasch model is a special case.
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Factor models: parametric vs. non-parametric specifications

• Two possible specifications for the random effect:
▶ Standard parametric model: βi ∼ N(0, 1)
▶ Non-parametric specification (Dirichlet process mixture of normals):

βi | G ∼
∫

N(· | η, τ2)G (dη,dτ2), G ∼ DP(M,G0)

• How do you fairly compare these two models?
▶ Paganin, S., Paciorek, C. J., Wehrhahn, C., Rodriguez, A., Rabe-Hesketh, S., &

de Valpine, P. (2022+). Computational methods for Bayesian
semiparametric Item Response Theory models. arXiv preprint
arXiv:2101.11583.

▶ Try to match the prior distribution of θi = G (µj + αjβi ) across both
models!
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Binary factor models in general topological spaces

• The models we discussed previously project the data on low-dimensional
Euclidean spaces.

• In some applications (e.g., in political sciences) other geometries might be
more appropriate!
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Spatial voting models

Rational choice theory derivation:

ψj = “Yeah” position ∈ Rd

ζ j = “Nay” position ∈ Rd

βi = Ideal point ∈ Rd

Ui ,j(Yeah) = −
∥∥βi −ψj

∥∥2
+ ϵi ,j

Ui ,j(Nay) = −
∥∥βi − ζ j

∥∥2
+ νi ,j

where νi ,j − ϵi ,j ∼ Gj , and yi ,j = 1 ⇔
Ui ,j(Yeah) > Ui ,j(Nay),

µj = ζ
T
j ζ j −ψT

j ψj

αj = 2(ψj − ζ j)

Policy Space representation
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Binary factor models in general topological spaces

• Consider lettingψj , ζ j ,βi ∈ D, whereD is a connected Riemannian
manifold and define

Ui ,j(Yes) = −
{
d
(
βi ,ψj

)}2
+ ϵi ,j ,

Ui ,j(No) = −
{
d
(
βi , ζ j

)}2
+ νi ,j ,

where d
(
βi ,ψj

)
is the geodesic distance between βi andψj and

νi ,j − ϵi ,j ∼ Gκj .

• As before, yi ,j = 1 iff Ui ,j(Yes) > Ui ,j(No), so

P(yi ,j = 1 | βi , ζj , ζ j , κj) = Gκj

({
d
(
βi , ζ j

)}2 −
{
d
(
βi ,ψj

)}2
)
.
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Spherical factor models

• In the SK+1, the geodesic distance is given by
ρK+1(ψ,β) = arccos

(
xTψxβ

)
, with, for example,

xψ,1 =cosψ1 cosψ2 cosψ3 · · · cosψK−1,

xψ,2 =sinψ1 cosψ2 cosψ3 · · · cosϕK−1,

xψ,3 =sinψ2 cosψ3 . . . cosψK−1

...

xψ,K =sinψK−1 cosψK ,

xψ,K+1 =sinψK .

• Yu, X., & Rodriguez, A. (2022). A Bayesian Approach to Spherical Factor
Analysis for Binary Data. arXiv preprint arXiv:2008.05109.
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Priors for spherical factor models

Standard von-Misses Fisher distributions on the sphere for {ψj}Jj=1,
{ζ j}Jj=1 and {βi}Ii=1 will not work!
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Variance of induced prior on θi ,j - Von Misses-Fisher priors
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Spherical models

• We need a new class of priors on the sphere that allows for marginal
variances of the angles to decrease with as new dimensions are added

p(ϕ | ω) =
(

1
2π

)K

2K−1 1
I0(ω1)

exp {ω1 cosϕ1}

K∏
k=2

1
I0(ωk)

exp {ωk cos 2ϕk}

• Unlike the Euclidean case, we need the variance to decrease for both the
ideal points and the Yes/No positions!
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Variance of induced prior on θi ,j - Von Misses-Fisher priors
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The role of priors with heavy tails
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Two philosophies ...

g -priors and its kin Horseshoe and its kin

• Accounts for the “right”
correlation among
coefficients.

• “Non-directional”: Same tail
behavior in every direction

• Coefficients are independent
a priori.

• “Directional”: tails along axis
are heavier than tails in other
directons
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Getting the best of both worlds:

• “Directional” g -priors:

θγ | γ,Λγ , σ2 ∼ N
(

0, σ2Λ
1/2
γ

{
XT
γ Xγ

}−1
Λ

1/2
γ

)
with Λγ = diag

{
λγ,1, . . . λγ,pγ

}
and λγ,j ∼ H .

• “Correlated” continuous shrinkage priors:

θ | Λ, σ2 ∼ N
(

0, σ2
{

XTΛ−1X
}−1

)
with Λ = diag {λ1, . . . λp} and λj ∼ H .
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Factor models

• A lot of the literature on continuous shrinkage priors has focused on
making the Horseshoe a bit more flexible by making the distributionH
more flexible by adding a couple of extra parameters.

• You could make the specification more flexible by setting a
non-parametric prior onH (e.g., a Pòlya Tree centered on the half Cauchy
distribution).

• Still somewhat speculative, this is work in progress!
▶ Calibration?
▶ How much can you really learn when you specify a non-parametric model

further down in the hierarchy?
▶ Efficient computation.
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Concluding remarks

• A lot of the things that I learned from Pericchi 20 years ago still influence
both my research and my teaching.

• I cannot believe it has been 20 years ...

• The school that he created in Venezuela starting in the id 80s and early
90s is still going strong, if in exile ...
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Thank you!
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